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The steady dynamic problem of the motion of a central semi-infinite crackx ~ ( ~ ,  0),y = 0 at a sub-Rayleigh velocity in an 
elastic strip x • ( - ~ ,  + ~ ) ,  y e (-h, h) is considered. The amplitudes of the propagating waves (the homogeneous solutions) are 
specified at x = ~ .  The related problem of the delamination of two strips x e ( - ~ ,  + ~) ,  y • (-h, 0) and y • (0, h) which are 
not bonded together but closely adjoin one another when x >_ 0, y = 0 is solved in quadratures together with the problem of the 
cleavage of the strip. The stress intensity factors at the crack tip are found. Cases of the partial flux of the deformation energy 
alongx from minus infinity to plus infinity by passing the crack are investigated. The continuous piecewise-homogeneous solutions 
of elastostatic and steady problems are compared. In particular, it is shown that steady solutions, which when c ~ 0, become 
the well-known elastostatic solutions of problems in which bending moments and shearing forces are applied to the cleaved parts 
when x = - ~ ,  do not exist. © 2004 Elsevier Ltd. All rights reserved. 

In many problems of the quasi-steady crack growth, the main characteristic of the crack stability, the 
stress intensity factor, is found without solving the problem. Rice [1] has developed the corresponding 
technique. It is based on the principle of the conservation of the flux of energy G passing through an 
elastic body from infinity to the crack tip and on Irwin's formula [2], which relates the stress intensity 
factor to the quantity G. Problems of this kind of different complexity have been considered in [3]. If 
the limiting sink of energy Gc is used as the criterion for the crack growth rather than the critical stress 
intensity factor for a given material Kc, then, in order to estimate the crack state, the increment of the 
energy G is calculated using elementary mechanical considerations corresponding to the conditions at 
infinity and, also, the criterion for the crack instability G >_ Go 

The results of the investigation carried out below enable us to note that, in steady problems of elasticity 
for waveguides, the above mentioned technique for investigating a crack does not work as the energy 
and inertia of an elastic body at infinity are unboundedly large and it is impossible to guess in advance 
what the flux will be. However, as follows from this paper, a still more important obstacle to the use 
of the Rice method in steady problems is the fact that the condition for the steady crack growth 
G = G c is not satisfied. It is found that, in a number of cases, the power of the energy flux generated 
by the propagating waves E when x -- - ~  is several times greater than the limiting value of Ec, since 
part of it, on by-passing the crack tip x c (-~,, 0), departs to +,~. The propagating waves, which have 
their own frequency after passing through the section x = 0, serve as carriers of this flux. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Together with an elastic plane, an elastic strip, which is weakened by a semi-infinite cut, serves as the 
simplest and most informative model of the crack state in a solid. It takes account of the boundedness 
of the real domains in one direction, and describes the properties of the propagating waves and their 
contribution to the influx (or outflux) of additional energy to the crack tip. 
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Suppose a stripxl e (_oo, +~o),y 1 ~ (-h, h) with elastic characteristics )~ and g and density p, moves 
at a constant sub-Rayleigh velocity c relative to the xOy plane in a direction opposite to the Ox axis 
such that x = xl - ct, y = Yl, where t is the time. 

The strip is cleaved by a semi-infinite central crack x < 0, y = 0, the tip of which moves in it with a 
velocity c in the direction of 01xl and remains in place in the coordinates xOy. 

Because of the mirror symmetry of the cleaved strip x e (--oo, +oo),y e (-h, h), the initial problem 
decomposes into a symmetric problem (problem A) and a skew-symmetric problem (problem B). These 
problems can be formulated in the form of two problems for the upper stripx e (--oo, +~o),y e (0, h) 
with mixed boundary conditions 

for both problems 

Oy(x,h)  = Xxy(x,h ) = 0, x e  ( - ~ , + ~ )  (1.1) 

for problem A 

Oy(X, O) = -Plg(X + ~), x ~ (-oo, 0); V(x, 0) = 0, x e (0, +oo) 

Xxy(X, 0) = 0, x e (-oo, +oo) (1.2) 

for problem B 

Xxy(X,O ) = P2~(X+~), xE (-°%0); u(x, 0) = 0, x~  (0,+ oo) 

Or(X, 0) = 0, x~  (-oo, +oo) (1.3) 

where P1 - 0 and P2 > 0 are the magnitudes of the compressive concentrated shear forces, normal to 
and in the opposite direction to the Ox axis, which are applied to the crack surfaces at the points 
x = -~, y = 0 and 8(x) is the Dirac 5-function. Moreover, certain wave conditions when x = --~ and 
conditions that there is no contact between the crack surfaces a~(x, 0) _ 0,x < 0 are specified in problem 
A. In considering the cleavage problems A and B, the condition that the elastic strain energy must be 
bounded in the neighbourhood of the crack tip must be satisfied. In the delamination problem A, the 
boundedness of the compressive normal stresses Oy(0, 0) _ 0 and the absence of tensile stresses 
%(x, 0) > 0 when x > 0 are necessary. 

2. THE G E N E R A L  S O L U T I O N  

The solution is constructed using Papkovich-Neuber functions in Laplace integrals [4] 

u(x, y ) =  ~'-~I[p (p, y)'l q?'(p, y)lePXdp 
L (a 2 2)p 

(2.1) 

~)(x, y)  = 2@iII~'(p,y)-a22bZ~P(p,y)lePXdp 
L 

(2.2) 

~(p , y )  = Acosapy+Bsinapy,  ~P(p,y) = Ccosbpy+Dsinbpy (2.3) 

2 -2 J 2 -2 2 - 1 ,  2 -1 
a = 1 - -  C C 1 , b = 1 - -  C C 2 , C 1 = ()~ + 2g) C 2 = gp (2.4) 

where c 1 and c 2 are the velocities of the compression and shear waves. 
Using the Cauchy formulae and substituting the functions (2.1)-(2.4) into the main equations 

(1.1)-(1.3), we obtain the general formulae for problems A and B 

uk(x,y) = ~iIG(p)Uk(p,y)ePXdp,  k = 1, 2 . . . . .  5 (2.5) 
L 

UI(P, Y) = p ( A c  a + nsa) + a22~b_b2( - CSb + DCb) (2.6) 
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y) = a p ( - A s  a + B%) - a2 ! b--------5(CCo + Ds b) (2.7) Uz(P, 

U3(p' Y ) =  2gp lap( -asa  +BCa)-12+~b22(Ccb+DSO)la-b J (2.8) 

{ 4bg  } 
U4(P, y) = p p[~,(1 - a 2) + 2gl (Ac.  + Bs a) + a2 _ - ~ ( -  CSb + DCb) (2.9) 

Us(p, y ) = - g p l p (  l + b 2 ) ( A c a + B s a ) +  4b (_ Csb + DCo) 1 (2.10) 
a 2 _ b 2 J 

where Uk(p, y) are the Laplace transforms of the displacements u(x, y) = ul(x, y), a)(x, y) = u2(x, y) and 
the stresses ~y(X, y) = u3(x, y), cyx(x, y) = u4(x, y), ay(X, y) = u5(x, y), G(p) is an arbitrary function and 
cr = cos rpy, s r -~" sin rpy. 

In the symmetric problem A 

A = ( l + b 2 ) ( 4 a b - c + ) p  -1, B = ( l + b 2 ) d _ p  -1 (2.11) 

C = a(a2-b2)d_, D = a(a2-b2)[c_+(l  +b2) 2] (2.12) 

In the skew-symmetric problem B 

a = -4bd+p -1, B = 4 b [ c _ + ( l  +bZ)Z]p -1 (2.13) 

C = ( a  2 - b 2 ) ( 1  + b 2 ) ( c +  - 4ab), D = ( a  2 - b2)(1 + bZ)d+ (2.14) 

Here, 

0~+_ = [4ab + (1 + b2)2]/2 

c± = ~_cos(a + b)ph + ot+cos(a - b)ph 

d e = _.+ ~_sin(a + b)ph - cx+sin(a - b)ph 

3. H O M O G E N E O U S  P R O B L E M S  

Putting PI = P2 = 0 in the mixed conditions (1.2) and (1.3) and substituting the functions (2.10), (2.7), 
(2.11), (2.12) and (2.8), (2.6), (2.13), (2.14), respectively, instead of their transforms, in the case of 
homogeneous  problems we obtain the following equalities 

for problem A 

o+(p) = G(p)Ul(p),  l)-(p) = G(p)Nz(p), p ~  L (3.1) 

• (" 2 . 2 a + b  , 2 . 2 a - b  , ' ~  
_ - ~ + s l n  - - - - ~ - p n ) ,  = - a ( 1  bZ)d_ Nl(P) = 4gp~tx s i n  - - T p n  Nz(p) - (3.2) 

for problem B 

"c+(p) = G(p)N3(P), u-(p) = G(p)N4(p), p ~ L (3.3) 

N3(p) = -2Nt (p )  , N4(p) = -2b(1 - b2)d+ (3.4) 

The plus and minus superscripts denote the analyticity of the transforms of the functions Cry(X, 0), 
X~y(X, 0) and a~(x, 0), u(x, 0) on the right-hand side Rep  > 0 and the left-hand side Rep < 0 of the complex 
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planep respectively. On eliminating the function G(p)  in (3.1) and (3.3), we obtain the Wiener-Hopf 
equations: 

for problem A 

t~+(p) = K(p )o - (p ) ,  K(p)  = N l (p ) /Nz (p ) ,  p e L (3.5) 

for problem B 

"¢+ (p)  = K(p)u-  (p),  K(p)  = N3(p)/N4(p),  p ~ L (3.6) 

In this case, it is those piecewise-homogeneous solutions of the problems being considered which 
describe elastic wave that propagate without attenuation to or from infinity which are of interest. 
Obviously, they are only generated by the zeros of the function Nk (3.2), (3.4), lying on the imaginary 
axis. We shall now study these zeros. 

Since the quantities a, b, a - b and ~+_ are positive, sin(a -+ b)ph > 0 on the imaginary axisp = il3 
when I~ > 0 and, consequently, the function N2(p) has a simple zero p = 0 and does not have other 
pure imaginary zeros when ~ ~ (--~, + ~) .  

When p = il3, ~ > 0, the function Ng(p) obviously has only the same zeros as the function 
f(13) - or_IX+ 1, where 

f ( ~ )  = sh (a -b )~h[sh (a+b)~h1-1  

Since 

(ash 2b~h - b sh 2a~h)'~ = -4abh sh (a + b) ~h sh (a - b)[3h < O, 

lim ( a s h 2 b ~ h -  bsh2a~lh) = 0 
~-~o 

13e (0 ,  oo) 

then 

f ' ( ~ )  = h ( a s h 2 b ~ h - b s h 2 a ~ h ) [ s h ( a  + b)[~h]-2<0, 13 ~ (0, oo) 

Consequently, the functions f([3) and f([3) - IX_ct+ 1 decay monotonically with respect to [3 in the interval 
(0, oo). According to the equalities 

l imf (~ )  = ( a - b ) ( a + b )  -1, l imf(~i)  = 0 
~-~0 ~ - ~  

the last function has opposite signs at the ends of this interval: 

Ix a( 1 - b2) 2 Ix 
f(O) - >0,  f(oo) Ix- - = - < 0  

IX+ IX+(a + b )  IX+ IX+ 

Hence, in the interval (0, oo) the functions f(~) - Ix_ix+l and N4(i[3) have the unique simple zero 
fi = ~0. Moreover, the function N4(p) on the imaginary axis has the simple zeros p = 0 and, by virtue 
of its oddness, p = -i~o. 

The function NI(p)  can be represented in the form of a product of the functions investigated 

N l ( p  ) = _ 2].tp N (P--'~N (P'~ 
ab( 1 - b 2 )  2 2~'2) 4~'2) 

It follows from this that, in the case of the same parameters in all of the Nk(p),  the functions NI(p)  
and N3(p) have two simple zerosp = +__2i[~ 0 on the imaginary axis and a triple zerop = 0. 

The functions Nk(p)  also have a denumerable set of complex and real zeros p = pn(n = -+1, 
• +2 . . . .  ) which are arranged symmetrically about the axes Rep = 0 and Imp = 0. On the basis of well- 
known theory [5], it can be shown that their asymptotic form is 

- /tn 
P" ( a + b ) h  + rn' n = +1,+2 . . . .  
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where n is the number of zeros in the half-plane Rep  > 0 in order of non-decreasing modulus Pr and 
r, are complex numbers which are bounded with respect to all n and with respect to their modulus in 
the general case. 

We will seek the solution of problem (3.5) in the form of the product of solutions of two Riemann 
problems [6]: 

+ 
csj(p) = K j ( p ) v j ( p ) ,  j =  1,2, p e L  (3.7) 

+ + 
O+(p) = (31(p)tY2(p), 1)-(p) = l)l(p)l)2(p) 

Kl(p)  = Hptgrcptgn(p-  2i[30)tg~(p + 2i~0 ), K2(P) = K(p) /Kl(p)  (3.8) 

H = -2~tt~_[a(1 - b2)] -1 

Here, the coefficient KI(p) is taken such that the function Kz(p) satisfies H61der's condition on the 
whole of the imaginary axis, is even, and is strictly positive and, consequently, has an index equal to 
zero K2(i~) ~ 1 when [3 ~ _+ oo. The factorization of KI(p) depends on the shape of the contours L 
which we shall choose such that they pass along the imaginary axis and bend along the arcs of semicircles 
of small radius to the left and to the right of the pointsp = 0 andp  = +2il30. In all, there are 23 such 
contours Lq (q = 1, 2, ...), the first three of which are shown in Fig. 1. 

We now show that the solutions in L1, L2 include all the piecewise-homogeneous solutions which 
satisfy the boundary and energy conditions which have been imposed and that the solutions in L3 are 
linear combinations of the solutions in L1 and L 2. When q > 3, solutions do not exist in the class of 
specified functions. 

We will now put grq(P) = gr(P) w h e n p  ~ Lq. On expanding the tangents in products of gamma- 
functions, from relations (3.7) and (3.8) when q = 1, 2 we obtain 

(Ylq(P) = H i p -  2(-1)qi~o]Q(p), O-lq(P ) = {p2[p + 2(_l)qi~o]Q(_p)}-I 

Q(p) = F( 1/2 + p)l-'( 1/2 + p - 2i~o)F( 1/2 + p + 2i1~o) 

F(1 + p)F(1 + p -  2i~o)F(1 + p + 2i[~o) 

It follows from this that 

(1~(p)- Hp -1/2, v-l(p)_p-3/2, P"-) o% (1~'(0) = (-1)  q+liHJ~th21tp0 (3.9) 

Similarly, whenp  ~ L3 

+ 
c; l(p) = nQ(p) ,  

Cyl(p) - n p  -3/2, 

Vl(p ) = [p2(p2 + 41]~)Q(_p)]-I 

v l ( p ) - p  -5/2, p---)~,,; Ol(0) = H,~th2~l~0(2130) -1 

On the contour which passes around the left of the point p = 0 and around the right of the points 
p = --2i[30, we have 

C~l(p) = H(p2 + 4112)Q(p); 01(p ) _ HeU2, v-l(p) _ p-1/2, p ---) ~, (3.10) 

2i~o 2i~ 2i~o 

Oo ' °l: °_ i: ° -2i~ 2i~0 -2i~o 

I L l  I L2 ! L3 

Fig. 1 
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On the remaining four contours it is obvious that 

+ 
01(p)-O(P~'), 7>0, p--~o~ (3.11) 

On using Sokhotskii's formulae and evaluating the integrals along the arcs of the semicircles, which 
are equal to the half residues of the corresponding functions, it is easy to show that the contours Lq 
when j = 2 and for all q can be moved onto the imaginary axis. Hence, the canonical solution o~-0 of 
problem (3.7), (3.8) whenj = 2 is independent ofq and, when the properties of the function Kz(P) are 
taken into account, is given by the Gakhov formulae [6] 

I - ~  1 .+'f ° lnK2(t) dr; + + , lim 620(P ) = 1, Rep >0 ~2°(P) = exp[ 2rot Jo t - p  J p ~  (3.12) 

+ i ~  

+ {, } °2°(tl3) = K 2 ~ e x p  ~ I t - - - - ~  dt 
- i  oa --  

(3.13) 

By virtue of the oddness of the integrand in (3.13) when [~ = 0 

+ 
O 2 0 ( 0 /  = K ~ - ~ 2 ( 0  ) = ( 1  b2)4~ _ _ > 0  

w e  will now find the general solution o+(p) of problems A when q = 1, 2, 3. According to relations 
(3.5), the equalities 

~+(p) _ I f (p)  O0(p) = 61(P)~2o(P), Vo(p) = Ul(P)U2o(P) (3.14) 
o0(p) v0(p) 

are satisfied on a contour Lq. 
For the cleavage problem in the class of solutions with a non-zero, bounded elastic strain energy in 

the neighbourhood of the crack tip, we have 

Oy(X, O) -- Ktl 2,~-'g-x, x ~ 0 

where K1 is the stress intensity factor. Using a theorem of the Abel type, it follows from this that 

& ( p )  - Kz/,f2-p, p ~ ~ (3.15) 

According to formulae (3.9) and (3.12) when q = 1, 2 

o; (p )  - Hp  -112, p ~ co (3.16) 

Since the ratio of these functions (3.14) is equal to a constant, by the generalized Liouville theorem 
the general solution has the form 

+ 
o+(p) = MOo(p), R e p > 0  (3.17) 

where M is an arbitrary constant. 
Analogous estimates for the contour L 3 show that o~(p) = 0(p-3/2), p ---) oo and, consequently 

o+(p)/Oo(p) O(p),  p- - )  oo; o+(p) (Mp + + = = N)~o(p) ,  Rep > 0 

where M and N are arbitrary constants. 
By virtue of (3.10)-(3.12), for both the cleavage and delamination problems when q > 3 andp ~ ~ ,  

we have 

~+(p)/cJ~(p) = O(pr),  7 < 0  
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Hence, by Liouville's theorem, it follows from this that (y+(p) - 0 and, consequently, non-trivial 
solutions of the problems in question do not exist when q > 3. 

The functions 

G(p) = (~+(p)/N1(P), R e p > 0 ;  G(p)  = l f (p ) /N2(p ) ,  R e p < 0  

and the corresponding solutions (2.5)-(2.12) are determined from the general solutions cr+(p) using 
formulae (3.1). 

When x < 0, we can represent these solutions in the form of series over the residues in the zeros of 
the function Na(p). On closing the contours La and L 2 on the right with semicircles of large radius, we 
obtain 

Here 

N f (~OqtP, Uk(p ' y)ePXdp = 
uk(x' Y) = Ukq(X' Y) =- 2r~i3 N l (p )  

Lq 

• ~(Yoq(O)r(Y)~ + +* ~ + + (Yoq(O) x + (~Oq (0) R n ~  [(Yoq(an) U ra = M].--'~_----~Olkq ~ - - -  /~,,'2"7;'7--~, k' n'Y) ea"x+ 
~th(1 - b  g) "2k-  11 ~vltan) 

+ - + q + l .  
r~°q(an) u "~ y)ea"Xenl - rr°q(2(-1)~~{ i~°) Uk(2(-1)  q+ l i~o, y) x 

+ ~  k( n, j N,l(2(_l)q+,i~0 ) 

(3.18) 

x (cos2~oX + i(-1 )q+ I sin2~oX) } 

r(y) = - y  + [4a 2 -  (a 2 + 1)(b 2 + 1)]hoC l 

002(0 ) --(Y;, ( 0 ) i ~  2 h ~ a _ a  -1 , +* (Y;1 (0)  = = ( o )  -- 

+i,~ (3.19) 

+(2i~o), 0t = 4a 2 - ( 1 + b 2 )  2 Co2(-2i130) = o01 

and 6qk is the Kronecker delta. If an is a complex number, then en = 1 and, if an is a real number, then 
en = 0, Re an > 0. An asterisk denotes a derivative with respect to p and a bar indicates a complex 
conjugate. 

The first two terms on the right-hand side of equality (3.18), the residues at a zero, determine the 
polynomial solution (a continuous wave) in which the displacement u(x,y) is bounded, a)(x, y) increases 
linearly alongx and Z~y = (Yx = (Yy = 0. The residues at the pointsp = + 2/[30 are continuous trigonometric 
elastic waves, and a series defines the waves, which decay exponentially with respect to x when x ---) - ~ .  
In accordance with relations (3.15)-(3.17), the stress intensity factor is expressed, regardless of q = 1, 
2, by the formula 

K 1 = - M - -  (3.20) 
a(1 - b  2) 

Kx > 0 when M < 0 and KI ---) K/° = -2~Ml.t()~ + g)()~ + 2~t) -1 when c --+ 0. 
We will now consider the asymptotic form of the real waves when x --) -~o. Adding and subtracting 

the solutions (3.18) with a factor of 1/2 when q = 1, 2, we obtain respectively 

+ 
o01 (0)  

uk+(x, y) = M2i~o~th( 1 _ b2)52k- MReTk(X, y) (3.21) 
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uk_(x, y) M {_ RYOl (0)r(Y)~lk + [_ iOol(0)x +. = + Imo01 ( 0 ) ] ~ 2 k }  -- 
g h (  1 - b 2) 

-MImTk(x ,  y) 

~-~1(2i~°) U "2i" Tk(x, Y) = N , I ~  kt Po, Y)(C°S2~ox + isin2~oX) 

(3•22) 

In this case, the solution ug+(x, y) has the stress intensity factor (3.20) for uk_(x, y) K1 = O. 
The first term on the right-hand side of equality (3.21) is a positive constant quantity as, according 

to (3.20),/(i > 0 for M < 0 in the cleavage problem, and the second term is proportional to the quantity 
cos(2~0x + ~), where ~ is a certain phase shift. It follows from this that, over certain ranges of x, the 
function v(x, 0) can periodically have negative values and the crack surfaces then overlap. Hence, starting 
out from the requirements of mechanics, the asymptotic form of (3.21) and the corresponding complete 
solution of (3.18) must be checked for the condition aJ(x, O) > O. 

The solution Uk_(X, y), in which Kx = 0, refers to the delarnination problem. For large x, due to the 
second term on the right-hand side of Eq. (3.22), the quantity a~(x, 0) > 0 i fM < 0 and the crack surfaces 
do not overlap. Additional checking of the solution is necessary in the case of arbitrary values ofx. 

We will now investigate the energy fluxes transported by the continuous waves and initially calculate 
the energy flux generated by the polynomial wave (the P-wave) (3.22) which is excited at --~. Since, in 
this wave, 

• + 

OuP = O, ()I)P 1(~01(0) P P P 
0-7 ~ = -M. = ~x = 0 (3.23) 

g h ( 1 - b 2 )  ' Xxe = (yy 

then, in the sectionx = const < 0,y ~ (-h, h), the flux is solely determined by the kinetic energy of the 
velocities of the displacements of the strip 

h ~.Oup,, 2 .bDP. 2 

-- ocILl ) 
0 

and, according to relations (3.23) and (3.19), we find 

Ee = 2M 2 g c c t  
a( 1 - b 2) 

(3 •24) 

From expression (3.2), we have 

K a( 1 - b 2) 
M = - '2--4~-~_ (3.25) 

Substituting expression (3.25) into relation (3.24), we obtain an equality which relates the energy flux 
to the stress intensity factor 

E e = tc2ac(1 - b 2) 

which is identical to the Kostrov-Nikitin-Flitman formula [7] for a flux from the crack tip during the 
cleavage of an elastic domain under steady-state conditions. Since the function N2(p) does not have 
pure imaginary zeros, there are no continuous waves when x -~ +oo, and this means that there is also 
no flux to +oo. When account is taken of the fact that K1 = 0 in this case and, consequently, the overall 
flux into the crack tip during delamination, which is determined by the solution of (3.22), is equal to 
zero, it can be concluded, starting from the law of conservation of energy flux and from the conditions 

P on the edges of the strip, that the flux E generated by the polynomial wave is compensated by 
T the opposing energy flux E generated by the solitary trigonometric wave (the T-wave) (3.22) and the 

interaction energy E Pr of these waves. These fluxes can be found using the formula [8] 
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h Ou i 1( OUiOUi 
E =  - 2 j L ~i l -g[ + s l p -~-[ -g~ + %u,, , )c ] dy 

o 

(3.26) 

where the first term in the square brackets (in tensor notation) determines the intensity of the external 
load applied to the end of the strip and moving in the x direction at a velocity Ou/Ot, and the second 
and third terms take account of the kinetic and internal strain energy respectively. Since, by virtue of 
relations (3.26), (3.23) and (3.19) 

? iT2o = - z p c j - ~ - - - f f ~ a y  = 2Mgc  -ff~xdY 
0 0 

the fluxes E e and E Pr only contain a kinetic component. It is practically impossible to specify this 
component without deforming the strip at - ~ .  The mechanical treatment of the solutions therefore 

r consists of the following. In the delamination problem, the stresses (yr and (Yxy are specified at the ends 
of the strips. The energy flux E T due to them is completely compensated by the counterflux of kinetic 
energy E P in the strip, as a solid body, and the kinetic energy of the interaction of the waves E Pr. The 
load at the ends of the strips x = const, y ~ (0, h) leads to their gathering of momentum, which is 
proportional to x. The solution does not have an analogue in the quasi-steady-state case where the load 
at the ends of the strips causes displacements v(x, y) in the form of a third degree polynomial in x. 

An additional condition is required for determining the arbitrary constant M but the solution (3.22) 
which has been obtained cannot be independently implemented using just any M. It is obvious that the 
inequality C~y(X, 0) < 0 for any x > 0, which is necessary in the delamination problem, is not satisfied 
in this solution. However, if it is specified that there is some compressive overloading of the strip, then 
M can be found from different mechanical conditions of the type (Yy(X, O) <-- (Yc when x > 0, where ~c is 
the minimum permissible compressive stress. Any stress Gy(x, 0) is permitted in the cleavage problem 
when x > 0 but, when expression (3.21) is used, the problem of the overlapping of the crack surfaces 
at - ~  arises, which requires additional checking. 

Knowing the value Of Klc, that is, the limiting stress intensity factor for a given material, it is possible 
to find M. From Irwin's fracture condition/(i  = Kic and expression (3.20), we have 

K a(1 - b z) 
M = - ic-~---4~--~_ (3.27) 

When c ~ 0, the quantity M ~ -Kxc()~ + 2g)/[2j2-g()~ + g)]. If the amplitude 

- M  > K~c(~, + 2g)/ [2 , f2g(£ + ~t)] 

is given, the corresponding velocity can be found from formula (3.27) as an algebraic equation. 
The T-waves (3.21) and (3.22) in the section x = x0 < 0 can be represented in the form 

ukr(x, y) = -MRe[(A k + iBk)(cos2~oX + isin2~oX)] (3.28) 

ukr_(x, y) = -MIm[(Ak + iBk)(cos2~oX + isin2~oX)] (3.29) 

where A~ and Bk are certain functions of 130 and y. In the section x = x0 + g(4~0) -1, the second wave 
has the form 

T 
u k_ = -M( A k cos 2 [3oX o - B k sin 2 ~oXo) 

and is identical with the first. Since the energy fluxes in the intervals x s ( -~ ,  0) and x e (0, ~ )  remain 
constant, the flux generated by the second wave in the section x = x 0 + rc(4130) -1 will be the same as 
whenx = x0 and, consequently, the energy fluxes generated by the T-waves (3.28) and (3.29) are identical. 

We will now consider the skew-symmetric problem B. Taking account of the properties of the functions 
N3(p) and N4(p) and starting out from the earlier principles, we split Eq. (3.6) into the two Riemann 
problems 
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"c~.(p) = Kj(p)u](p), j = 1,2, p ~  L 

+ + 

x+(p) = Xl(p)x2(p), u-(p) = u~(p)u~(p) 

. . t g r c ( p  - 2 i ~ 0 ) t g g ( p  + 2 i [ ~ 0 )  K(p) 
r l ( p )  = nlptgrc p ~ i ~ o  ) ' K2(P) - g l ( p  ) 

th22K~o 2 
KI(p)-Hlrc--ST--2--p, p---~0; KI(i~)--HI[~I, ~---)+_oo; 

th rC~o 

o~bhth2r~o 
K2(0) = lim K2(p) = - -  > 0; lim K2(P) = 1 

p -~ o 2~Ot_ th2 2 ~ o  p -~ 

n 1 - 

21.ta_ 

b( 1 - b 2) 

(3.30) 

+ i ~  
f 1 , lnK2(t) ] + 

"c2°(P) = expl -2-~  !_.= t - p  dt[, R e p > 0 ;  p-,=lim "~z0(p) = 1 

+ i ~  
+ • { 1 lnKz(t) } 

Xzo(d3) = K 2 ~ e x p  ~ I t---~-~ dr' x~°(O) = 4VK~2(O) 

(3.31) 

Here, z~0(p) is the canonical solution of the second Riemann problem (3.30). The function K2(i~) 
is strictly positive on the imaginary axis and, consequently, its index is equal to zero. The contours 
Lq, on passing along the imaginary axis, now go around to the left and to the right of the five points: 
p = O,p = +-i[~o,p = ---2il30. Correspondingly, solutions can be sought for 25 contours Lq (q = 4, 5, ...). 

Factorizing the tangents on the contour L 4 (Fig. 2a), we obtain the canonical solution of the first 
Riemann problem 

'~14(P) = HIQI(P)(P2 + 4~oZ)(p2 + ~)-1,  u_14(P ) = 

F( 1 + p - il3o)F( 1 + p + il3o) 
QI (P) = Q(P)F( 1/2 + p - il]o)F(1/2 + p + i~o) 

[p2Ql(-p)]-I 

where 

xl4(p) _ Hip -1/2, p----) oo; ,c14(0 ) = 2H 1,f~th2~[~0/thrc~0 > 0 (3.32) 

Hence, 

1 - b  2~/ b 

Similarly on the contour L5 (Fig. 2b) 

"c~5(p ) = H1QI(p) , ~15(p)-Hlp  -1/2, p - - )~ ,  z~5(0 ) = "~4(0) (3.33) 

We now construct the general solution of Eq. (3.6) on the contours Z 4 and L5. It can be shown that, 
on other contours, either a solution does not exist or it is a linear combination of those already obtained. 
On the contours L 4 and L5, we have 

"C+(p) _ u-(p) "C;q(p) = "C1q(p)'C20(P ), UOq(P ) = U-lq(p)u20(p) "~;q(p) UOq(P)' 
(3.34) 
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Fig. 2 

Since the solution of the initial problem, which has a bounded energy in the neighbourhood of the 
crack surfaces, is representable in the form "C~y(X, 0) - Kii/~/2rd, x ~ O, then "c+(p) - K~/~/I-~I, p ~ 0 
and, according to relations (3.31)-(3.33), the ratios (3.34) are constant when p ~ . Using the 
generalized Liouville theorem, we obtain from this 

x+(P) = Mq'r'°q(P)' Kit = M q b ( l - b  )' q = 4, 5 (3.35) 

where Mq are arbitrary constants and 1{i1 is the stress intensity factor which, apart from terms up to Mq, 
is independent of q. As in the case of a normal cleavage crack, if the velocity c and the fracture 
characteristics of the material Kiic are specified, the equality 

K b ( 1  - b 2) 
Mq = llC 24~ga_ (3.36) 

serves for calculating Mq and, if Kuc and Mq are given, c can be found from Eq. (3.6). Since 

K u = lim K u = 
c ---) 0 ""q )~+2g 

then the infinitesimal load amplitude (in the case of the infinitesimal velocity c --+ 0) is determined by 
the formula 

)~+2g Mq K11c2,~g(~, + g) 

We will now consider a problem associated with the propagation of waves and with energy fluxes. 
On expanding solution (2.5) in series in the residues to the right of L 4 when x < 0, we obtain 

M4 r "c04(P) U " "ePXd t" Uk4(X, Y) = ~ J ~ kiP, Y) P = -M4uk (x, y)-- 
L4 

-M4 ,L ,t n,Y)ea'X+N,i(~tn) k in  y)e ~. 

(3.37) 
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where 

1 - b 2 + +* 
Ul(X, y) = " ~ f [ ' t o q ( O ) x  + T, Oq (0)], 

U~(X, y) = 4(a 2 -  bZ)(oth)-l'toq(O), 

+ 

u~(x ,y)  = s(y)Zoq(O), 

U~(x, y) = O, q = 4 

s(y) = {a 2 + (1 - 2a 2 + bZ)[yh -1 - (1 - b2)-l] }(al.t) -1 

u f ( x , y )  = 0 

(3.38) 

Substituting expressions (3.38) into formula (3.36), we find the intensity of the energy flux generated 
by the solitary P-wave which is excited at --oo, 

e 2 bc(1 - b  2) 
E 4_ = 4KIt4R, R - 

4ga_  

Since it exceeds the flux intensity in the Kostrov-Nikitin-Flitman formula, corresponding to the given 
KII and to flux from the crack tip by a factor of four, it follows from the law of conservation of flux that 
3/4 of this intensity, on by-passing the crack, departs to + ~  with the T-wave, which is determined by 
the residues at the pointsp = ---i[30 

ukr4+(x, y) = 2M Re ru~4(i[~°) ] 4 L ~ U k ( i ~ o , Y ) ( C O S ~ o X + i s i n ~ o x ) ,  k = 1,2 
(3.39) 

E4r+ = 3K~tR 

The solution on the contour L5 when x --> - ~  comprises both P-waves (3.38), where q = 5, 

1 + + ,  1 +, 
%5(0) = ~04(0) ,  %5 (0) = ~ %  (01 

and T-waves 

r ['t°+s (2i[i°) 1 uks_(x, Y) = -2MsRe ~ U k ( 2 i ~  o, y)(cos2[ioX + isin2[3oX) 
LNstztPo) 

(3.40) 

When x ~ + ~ ,  it is obvious that there are no propagating waves. 
Forming the linear combinations 

1 1 
u(x ,y )  = Uls(x,y ) - ~ u l 4 ( x , y ) ,  V(x ,y)  = u ~ ( x , y ) - ~ u 2 4 ( x , y  ) (3.41) 

where M4 = )1//5 we obtain a solution which does not contain P-waves. Only the T-wave (3.40) with a 
frequency 2[3o is excited in it at --~. This T-wave transports an energy flux with an intensity E ~ and, 
beyond the crack tip, it is transformed into a T-wave with a frequency ~0 

z LN4(iI~o) j 

According to formula (3.39), the flux intensity is 

T 3 2 E+ =-~KII4R 

In this solution, the stress intensity factor is expressed by the relation 

1 3 31-tet_ 
K I t  = KI I  5 - ~ K I I  4 = ~ K t I  4 = Mg4/-~b(1 _ b 2) (3.42) 
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and, by virtue of the Kostrov-Nikitin-Flitman formula, determines the intensity of the energy flux into 
the tip 

Since E ~ = E o + E+ ~, we have 

9 2 
E o = i-~KltcR 

E T 3 2 
_ = - - i ~ K I I c R  

This last formula shows that, in the solution being considered, a flux with an intensity E+ r < 0, which 
is excited whenx ~ ~ ,  is directed towards the crack tip. It gives up part of its energy E0 > 0 in fracturing 
the material and to the steady motion of the crack, and the remaining energy E_ r departs to --~. 

It is convenient to make use of the solutions (3.37) and (3.41) with the solitary P- and T-waves at --~ 
in constructing a Green's function. 

For a given velocity c and K l l  4 = KIIC, formula (3.42) determines the amplitude M4 of the wave at 
- ~  and, when 344 and Kiic are specified, t he  crack propagation velocity. 

The investigation which has been carried out above naturally leads to the question of whether it is 
necessary that the energy flux from --~ in quasi-steady problems has to be directed as a whole from 
the strip across the crack tip. Strictly speaking, it is only possible to justify this hypothesis by solving 
the corresponding boundary-value problem in each case, proving, after investigating the piecewise- 
homogeneous solutions in the waveguide, that there are no continuous static waves in it whenx ~ +~,. 

4. C O N C L U S I O N  

We will summarise the basic results obtained in this paper. Solutions of homogeneous problems have 
been constructed taking account of the fact that the energy flux E P from --~ generated by a solitary 
polynomial wave (solution (3.37), (3.38)), is much greater than the limiting magnitude E o  since a large 
part of the energy, on by-passing the crack, departs with a trigonometrical wave along the positive 
semiaxis to + ~ .  When there are propagating trigonometrical and polynomial waves, excited at --~, in 
the solution, the component of the energy flux which is generated by the polynomial wave is related to 
the stress intensity factor by a relation which is identical to the Kostrov-Nikitin-Flitman formula. 

It has been shown that elastostatic solutions cannot be obtained from the steady solutions of the 
dynamic problem which have been considered by taking the limit when c ~ 0. 
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Fig. 3 
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The dynamic stress intensity factors KI and Kzi have been found at the tip of a crack which propagates 
along the axis of symmetry of a strip at a constant velocity. The dependence of the normalized quantities 
KI/K °, KII/K °, (KI and KII are determined by formulae (3.20) and (3.35)) on the normalized crack 
propagation velocity c/c2 is shown in Fig. 3. Linearly elastic materials which simulate concrete (E = 
3.6 x 10 4 MPa, v = 0.2 and p = 2.4 t/m 3) and rocky soil (E = 5 x 10 3 MPa, v = 0.35 and 9 = 2.5 t/m 3) 
were considered. The results of the calculations for the above-mentioned materials are represented by 
the solid and dashed curves respectively. As the velocity increases from zero up to the velocity of Rayleigh 
waves, the quantities being considered decrease monotonically, tending to zero, which is indicative of 
the possibility of the branching of the crack. 

The fracture criteria (3,27) and (3.36), which relate the critical stress intensity factor to the crack 
propagation velocity and the amplitude of the propagating waves, have been obtained. 
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